Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.053
Filtrar
1.
J Orthop Surg Res ; 17(1): 176, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35331269

RESUMO

BACKGROUND: Patients suffer from knee osteoarthritis (KOA) pain may seek for intra-articular injections before total knee arthroplasty (TKA), which have a possibility of causing the joint sepsis. However, the management and clinical outcomes of these patients following TKA remain uncertain. METHODS: Patients with a history of intra-articular injection, in which a joint sepsis was suspected, were included. The patients received joint irrigation and debridement (I&D) and antibiotic treatment until serum inflammatory indicators returned to normal level before TKA. The information of joint fluid routine and culture, synovium section and culture, and serum inflammatory indicator values were collected. Range of motion, Knee Society Scores (KSS) and Western Ontario McMaster Universities Osteoarthritis Index (WOMAC) were used for functional evaluations. RESULTS: A total of 17 patients with 17 knee joints were included, all with elevated C-reactive protein (CRP) levels (23.5 ± 8.7 mg/L) as well as increased number of white blood cells (WBC) in the aspiration (50.8 ± 15.3) × 109/L, but no positive cultures were found. The culture of synovium detected three positive results: two Staphylococcus epidermidis and one S. aureus. I&D treatment had no obvious effect on the functional outcomes of KOA, but alleviated the joint pain (p < 0.01). Furthermore, we found that I&D pretreatment could increase the operation time with about 10 min longer than the primary TKA (p < 0.01). With respect to TKA outcomes, I&D had a slight influence on the knee flexion (p < 0.01), but no significant difference was identified between the two groups for KSS and WOMAC (all p values > 0.05). In addition, there was no significant difference in complication rates between the two groups in the last follow-up. CONCLUSION: I&D treatment is a valuable procedure for suspected knee infection, which has a higher incidence of detecting microorganisms while does not influence the functional outcomes and complication rates of TKA. However, further larger studies are required to confirm these findings.


Assuntos
Artroplastia do Joelho , Desbridamento , Osteoartrite do Joelho/microbiologia , Osteoartrite do Joelho/terapia , Sepse/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/isolamento & purificação , Staphylococcus epidermidis/isolamento & purificação , Adulto , Idoso , Artroplastia do Joelho/efeitos adversos , Artroplastia do Joelho/métodos , Proteína C-Reativa , Feminino , Humanos , Injeções Intra-Articulares , Masculino , Pessoa de Meia-Idade , Dor/etiologia , Estudos Retrospectivos , Sepse/cirurgia , Infecções Estafilocócicas/diagnóstico , Resultado do Tratamento
3.
Eur J Clin Microbiol Infect Dis ; 41(1): 87-97, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34599708

RESUMO

Prosthetic joint infection (PJI) is a feared and challenging to diagnose complication after arthroplasty, with Staphylococcus epidermidis as the major pathogen. One important criteria to define PJI is the detection of phenotypically indistinguishable microorganisms with identical antibiotic susceptibility pattern in at least two different samples. However, owing to phenotypical variation within genetic clones and clonal variation within a phenotype, the criteria may be ambiguous. We investigated the extent of diversity among coagulase-negative staphylococci (CoNS) in PJI and characterised S. epidermidis isolates from PJI samples, specifically multiple S. epidermidis isolates identified in individual PJI patients. We performed a retrospective cohort study on 62 consecutive patients with PJI caused by CoNS from two hospitals in Northern Sweden. In 16/62 (26%) PJIs, multiple S. epidermidis isolates were available for whole-genome analyses. Hospital-adapted multidrug-resistant genetic clones of S. epidermidis were identified in samples from 40/62 (65%) of the patients using a combination of pulsed-field gel electrophoresis and multilocus sequence typing. Whole-genome sequencing showed the presence of multiple sequence types (STs) in 7/16 (44%) PJIs where multiple S. epidermidis isolates were available. Within-patient phenotypical variation in the antibiotic susceptibility and/or whole-genome antibiotic resistance gene content was frequent (11/16, 69%) among isolates with the same ST. The results highlight the ambiguity of S. epidermidis phenotypic characterisation as a diagnostic method in PJI and call for larger systematic studies for determining the frequency of CoNS diversity in PJIs, the implications of such diversity for microbiological diagnostics, and the therapeutic outcomes in patients.


Assuntos
Articulações/microbiologia , Infecções Relacionadas à Prótese/microbiologia , Staphylococcus epidermidis/fisiologia , Idoso , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Feminino , Humanos , Articulações/cirurgia , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Próteses e Implantes/microbiologia , Infecções Relacionadas à Prótese/tratamento farmacológico , Estudos Retrospectivos , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/isolamento & purificação
4.
BMC Microbiol ; 21(1): 306, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34736414

RESUMO

BACKGROUND: Healthcare workers are susceptible to colonization by multiresistant bacteria, which can increase the risk of outbreaks. METHODS: Samples were collected from the nasopharynx, hands, and lab coats of healthcare workers. The phenotypic identification was carried out using a VITEK®2 rapid test system. PCR tests for the mecA gene and the sequencing of the amplicons were performed. Staphylococcus epidermidis and Staphylococcus aureus phylogenies were reconstructed using the Bayesian inference. RESULTS: A total of 225 healthcare workers participated in this study. Of these, 21.3% were male and 78.7% female. S. epidermidis and S.aureus showed high levels of resistance to penicillin, ampicillin, erythromycin, tetracycline and cefoxitin. The prevalence of methicillin resistant S. aureus was 3.16% and methicillin resistant S. epidermidis was 100%. Multilocus sequence typing identified 23 new S. epidermidis sequence types, and one new allele and sequence type for S. aureus. The frequency of methicillin-resistant S. epidermidis in nursing and hemotherapy technicians as a percentage of the total number of healthcare workers was 5.8-3.1%, while the frequency of methicillin resistant S. aureus in hemotherapy technicians and biomedics, as a percentage of the total number of healthcare workers was 4.2-8.9%%. CONCLUSIONS: The healthcare workers at the city's blood bank, even when taking the necessary care with their hands, body and clothes, harbour methicillin-resistant S. aureus and S. epidermidis sequence types, which, as a potential source of multidrug resistant bacteria, can contribute to nosocomial infections among hematological patients.


Assuntos
Portador Sadio/microbiologia , Pessoal de Saúde/estatística & dados numéricos , Staphylococcus aureus Resistente à Meticilina/genética , Adulto , Antibacterianos , Bancos de Sangue/estatística & dados numéricos , Brasil/epidemiologia , Portador Sadio/epidemiologia , Feminino , Mãos/microbiologia , Humanos , Masculino , Resistência a Meticilina , Staphylococcus aureus Resistente à Meticilina/classificação , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Epidemiologia Molecular , Nasofaringe/microbiologia , Filogenia , Staphylococcus epidermidis/classificação , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/isolamento & purificação
5.
Anal Bioanal Chem ; 413(30): 7353-7362, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34704109

RESUMO

Activatable fluorescent probes have been successfully used as molecular tools for biomedical research in the last decades. Fluorescent probes allow the detection of molecular events, providing an extraordinary platform for protein and cellular research. Nevertheless, most of the fluorescent probes reported are susceptible to interferences from endogenous fluorescence (background signal) and limited tissue penetration is expected. These drawbacks prevent the use of fluorescent tracers in the clinical setting. To overcome the limitation of fluorescent probes, we and others have developed activatable magnetic resonance probes. Herein, we report for the first time, an oligonucleotide-based probe with the capability to detect bacteria using magnetic resonance imaging (MRI). The activatable MRI probe consists of a specific oligonucleotide that targets micrococcal nuclease (MN), a nuclease derived from Staphylococcus aureus. The oligonucleotide is flanked by a superparamagnetic iron oxide nanoparticle (SPION) at one end, and by a dendron functionalized with several gadolinium complexes as enhancers, at the other end. Therefore, only upon recognition of the MRI probe by the specific bacteria is the probe activated and the MRI signal can be detected. This approach may be widely applied to detect bacterial infections or other human conditions with the potential to be translated into the clinic as an activatable contrast agent.


Assuntos
Corantes Fluorescentes/química , Imageamento por Ressonância Magnética/métodos , Staphylococcus aureus/isolamento & purificação , Staphylococcus epidermidis/isolamento & purificação , Biomarcadores/metabolismo , Linhagem Celular , Humanos , Limite de Detecção , Microscopia Eletrônica de Transmissão , Espectrofotometria Ultravioleta
6.
Microbiol Spectr ; 9(2): e0006721, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34585952

RESUMO

Detection of bacterial DNA within meconium is often cited as evidence supporting in utero colonization. However, many studies fail to adequately control for contamination. We aimed to define the microbial content of meconium under properly controlled conditions. DNA was extracted from 141 meconium samples and subjected to cpn60-based microbiome profiling, with controls to assess contamination throughout. Total bacterial loads of neonatal meconium, infant stool, and controls were compared by 16S rRNA quantitative PCR (qPCR). Viable bacteria within meconium were cultured, and isolate clonality was assessed by pulsed-field gel electrophoresis (PFGE). Meconium samples did not differ significantly from controls with respect to read numbers or taxonomic composition. Twenty (14%) outliers with markedly higher read numbers were collected significantly later after birth and appeared more like transitional stool than meconium. Total bacterial loads were significantly higher in stool than in meconium, which did not differ from that of sequencing controls, and correlated well with read numbers. Cultured isolates were most frequently identified as Staphylococcus epidermidis, Enterococcus faecalis, or Escherichia coli, with PFGE indicating high intraspecies diversity. Our findings highlight the importance of robust controls in studies of low microbial biomass samples and argue against meaningful bacterial colonization in utero. Given that meconium microbiome profiles could not be distinguished from sequencing controls, and that viable bacteria within meconium appeared uncommon and largely consistent with postnatal skin colonization, there does not appear to be a meconium microbiota. IMPORTANCE Much like the recent placental microbiome controversy, studies of neonatal meconium reporting bacterial communities within the fetal and neonatal gut imply that microbial colonization begins prior to birth. However, recent work has shown that placental microbiomes almost exclusively represent contamination from lab reagents and the environment. Here, we demonstrate that prior studies of neonatal meconium are impacted by the same issue, showing that the microbial content of meconium does not differ from negative controls that have never contained any biological material. Our culture findings similarly supported this notion and largely comprised bacteria normally associated with healthy skin. Overall, our work adds to the growing body of evidence against the in utero colonization hypothesis.


Assuntos
Bactérias/classificação , DNA Bacteriano/isolamento & purificação , Fezes/microbiologia , Mecônio/microbiologia , Microbiota/genética , Adulto , Bactérias/genética , Bactérias/isolamento & purificação , Carga Bacteriana , Biomassa , DNA Bacteriano/genética , Eletroforese em Gel de Campo Pulsado , Enterococcus faecalis/genética , Enterococcus faecalis/isolamento & purificação , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Feminino , Humanos , Recém-Nascido , Masculino , Gravidez , Pele/microbiologia , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/isolamento & purificação
7.
PLoS One ; 16(7): e0253595, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34214092

RESUMO

Slightly acidic electrolyzed water (SAEW) was developed by Japanese companies over 20 years ago. SAEW has the advantage of potent sterilizing action while being relatively safe. This study evaluated the potential application of SAEW in spatial disinfection. Prior to experiments involving spatial spraying, the ability of SAEW to remove seven type of microorganisms that cause food poisoning was studied in vitro. Results indicated that free chlorine in SAEW, even at a low concentration (30 mg/L), was able to remove Cladosporium cladosporioides, a typical airborne fungus that degrades food, and spores such as Bacillus subtilis, a hardy bacterium. In an experiment involving spatial spraying, 3.43 log10 CFU/100 L of Staphylococcus epidermidis was sprayed in a room-sized space; the same space was then sprayed with SAEW. The number of settling microbes was measured and the sterilizing ability of SAEW was assessed. Results indicated that the concentration of S. epidermidis in the space was completely removed after 20 minutes of SAEW spraying. The above findings indicate that SAEW may be used to remove airborne microorganisms via spatial spraying.


Assuntos
Desinfetantes/química , Desinfecção/métodos , Microbiologia de Alimentos/métodos , Doenças Transmitidas por Alimentos/prevenção & controle , Água/química , Microbiologia do Ar , Bacillus subtilis/isolamento & purificação , Cladosporium/isolamento & purificação , Eletrólise , Doenças Transmitidas por Alimentos/microbiologia , Concentração de Íons de Hidrogênio , Staphylococcus epidermidis/isolamento & purificação
8.
PLoS One ; 16(7): e0253618, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34214099

RESUMO

The proportion of Staphylococcus aureus in the skin microbiome is associated with the severity of inflammation in the skin disease atopic dermatitis. Staphylococcus epidermidis, a commensal skin bacterium, inhibits the growth of S. aureus in the skin. Therefore, the balance between S. epidermidis and S. aureus in the skin microbiome is important for maintaining healthy skin. In the present study, we demonstrated that the heat-treated culture supernatant of Delftia acidovorans, a member of the skin microbiome, inhibits the growth of S. epidermidis, but not that of S. aureus. Comprehensive gene expression analysis by RNA sequencing revealed that culture supernatant of D. acidovorans increased the expression of genes related to glycolysis and the tricarboxylic acid cycle (TCA) cycle in S. epidermidis. Malonate, an inhibitor of succinate dehydrogenase in the TCA cycle, suppressed the inhibitory effect of the heat-treated culture supernatant of D. acidovorans on the growth of S. epidermidis. Reactive oxygen species production in S. epidermidis was induced by the heat-treated culture supernatant of D. acidovorans and suppressed by malonate. Further, the inhibitory effect of the heat-treated culture supernatant of D. acidovorans on the growth of S. epidermidis was suppressed by N-acetyl-L-cysteine, a free radical scavenger. These findings suggest that heat-resistant substances secreted by D. acidovorans inhibit the growth of S. epidermidis by inducing the production of reactive oxygen species via the TCA cycle.


Assuntos
Delftia acidovorans/imunologia , Dermatite Atópica/imunologia , Pele/microbiologia , Infecções Estafilocócicas/imunologia , Staphylococcus epidermidis/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Ciclo do Ácido Cítrico/imunologia , Delftia acidovorans/genética , Delftia acidovorans/metabolismo , Dermatite Atópica/microbiologia , Dermatite Atópica/patologia , Regulação Bacteriana da Expressão Gênica/imunologia , Humanos , Microbiota/imunologia , RNA-Seq , Espécies Reativas de Oxigênio/metabolismo , Pele/imunologia , Pele/patologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Staphylococcus aureus/imunologia , Staphylococcus aureus/isolamento & purificação , Staphylococcus epidermidis/imunologia
9.
Ann Clin Microbiol Antimicrob ; 20(1): 41, 2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34059077

RESUMO

BACKGROUND: Coagulase-negative staphylococci (CNS) survive as commensals of skin, anterior nares and external canals of human and were regarded as non-infectious pathogens. However, they are emerging as a major cause of nosocomial infectious due to their ability to form biofilms and high resistance to several classes of antibiotics. This study examines the biofilm forming abilities of 214 clinical CNS isolates using phenotypic and genotypic methods, and determines their antibiotic susceptibility patterns. METHODS: A total of 214 clinical isolates collected from different clinical samples were identified as CNS and their antibiotic susceptibility determined by CLSI guidelines. The biofilm forming ability of all isolates was determined by three phenotypic methods; Congo red agar (CRA) method, tube adherence method (TM) and tissue culture plate (TCP) method and by genotypic method for the detection of icaAD genes. RESULTS: Among all the isolates, S. epidermidis (57.5%) was found the most frequently, followed by S. saprophyticus (18.7%), S. haemolyticus (11.2%), S. hominis (7%), and S. capitis (5.6%). Antibiotic susceptibility pattern demonstrated 91.6% isolates were resistant to penicillin and 66.8% to cefoxitin while 91.1% isolates were susceptible to chloramphenicol. Constitutive and inducible clindamycin resistant phenotype as measured by D-test was seen among 28% and 14.5% of isolates respectively. Tissue culture plate method detected biofilm production in 42.1% isolate followed by 31.8% through tube method while 20.1% isolates were found to produce slime in Congo red agar method. The genotypic assay revealed presence of icaA and icaD genes in 19.2% isolates. CONCLUSION: The study shows a high prevalence of biofilm formation and inducible clindamycin resistance in CNS isolates, indicating the importance of in-vitro biofilm production test and D-test in routine laboratory diagnostics. Implementation of efficient diagnostic techniques for detection of biofilm production in clinical samples can help manage staphylococcal infections and minimize risks of treatment failures in hospitals.


Assuntos
Antibacterianos/farmacologia , Biofilmes , Coagulase/genética , Genótipo , Fenótipo , Staphylococcus/efeitos dos fármacos , Staphylococcus/genética , Biofilmes/crescimento & desenvolvimento , Clindamicina , Coagulase/metabolismo , Infecção Hospitalar/microbiologia , Farmacorresistência Bacteriana Múltipla , Genes Bacterianos/genética , Humanos , Testes de Sensibilidade Microbiana , Nepal , Infecções Estafilocócicas , Staphylococcus/isolamento & purificação , Staphylococcus/metabolismo , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/isolamento & purificação
11.
PLoS One ; 16(5): e0251136, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34029350

RESUMO

BACKGROUND: Seborrheic dermatitis (SD) is a chronic inflammatory skin disease with a multifactorial aetiology. Malassezia yeasts have been associated with the disease but the role of bacterial composition in SD has not been thoroughly investigated. OBJECTIVES: To profile the bacterial microbiome of SD patients and compare this with the microbiome of individuals with no inflammatory skin disease (controls). METHODS: This was a cross sectional study embedded in a population-based study. Skin swabs were taken from naso-labial fold from patients with seborrheic dermatitis (lesional skin: n = 22; non-lesional skin SD: n = 75) and controls (n = 465). Sample collection began in 2016 at the research facility and is still ongoing. Shannon and Chao1 α- diversity metrics were calculated per group. Associations between the microbiome composition of cases and controls was calculated using multivariate statistics (permANOVA) and univariate statistics. RESULTS: We found an increased α-diversity between SD lesional cases versus controls (Shannon diversity: Kruskal-Wallis rank sum: Chi-squared: 19.06; global p-value = 7.7x10-5). Multivariate statistical analysis showed significant associations in microbiome composition when comparing lesional SD skin to controls (p-value = 0.03;R2 = 0.1%). Seven out of 13 amplicon sequence variants (ASVs) that were significantly different between controls and lesional cases were members of the genus Staphylococcus, most of which showed increased composition in lesional cases, and were closely related to S. capitis S. caprae and S. epidermidis. CONCLUSION: Microbiome composition differs in patients with seborrheic dermatitis and individuals without diseases. Differences were mainly found in the genus Staphylococcus.


Assuntos
Dermatite Seborreica/microbiologia , Microbiota/fisiologia , Pele/microbiologia , Administração Cutânea , Adulto , Idoso , Estudos de Casos e Controles , Estudos Transversais , Dermatite Atópica/microbiologia , Feminino , Humanos , Inflamação/microbiologia , Malassezia/isolamento & purificação , Masculino , Pessoa de Meia-Idade , Staphylococcus epidermidis/isolamento & purificação
12.
Transfusion ; 61(7): 2146-2158, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33904608

RESUMO

BACKGROUND: Staphylococcus epidermidis forms surface-attached aggregates (biofilms) when grown in platelet concentrates (PCs). Comparative transcriptome analyses were undertaken to investigate differential gene expression of S. epidermidis biofilms grown in PCs. STUDY DESIGN AND METHODS: Two S. epidermidis strains isolated from human skin (AZ22 and AZ39) and one strain isolated from contaminated PCs (ST02) were grown in glucose-supplemented Trypticase Soy Broth (TSBg) and PCs. RNA was extracted and sequenced using Illumina HiSeq. Differential expression analysis was done using DESeq, and significantly differentially expressed genes (DEGs) were selected. DEGs were subjected to Kyoto encyclopedia of genes and genomes and Gene Ontology analyses. Differential gene expression was validated with quantitative reverse transcription-PCR. RESULTS: A total of 436, 442, and 384 genes were expressed in AZ22, AZ39, and ST02, respectively. DEG analysis showed that 170, 172, and 117 genes were upregulated in PCs in comparison to TSBg, whereas 120, 135, and 89 genes were downregulated (p < .05) in mature biofilms of AZ22, AZ39, and ST02, respectively. Twenty-seven DEGs were shared by all three strains. While 76 DEGs were shared by AZ22 and AZ39, only 34 and 21 DEGs were common between ST02, and AZ22 and AZ39, respectively. Significant transcriptional expression changes were observed in genes involved in platelet-bacteria interaction, biofilm formation, production of virulence factors, and resistance to antimicrobial peptides and antibiotics. CONCLUSION: Differential gene expression in S. epidermidis is triggered by the stressful PC storage environment. Upregulation of virulence and antimicrobial resistance genes could have clinical implications for transfusion patients.


Assuntos
Bacteriemia/microbiologia , Biofilmes/crescimento & desenvolvimento , Plaquetas/microbiologia , Regulação Bacteriana da Expressão Gênica , Staphylococcus epidermidis/genética , Sequência de Bases , Preservação de Sangue , Resistência Microbiana a Medicamentos/genética , Ontologia Genética , Humanos , RNA Bacteriano/biossíntese , RNA Bacteriano/sangue , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Pele/microbiologia , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/crescimento & desenvolvimento , Staphylococcus epidermidis/isolamento & purificação , Transcriptoma
13.
PLoS One ; 16(3): e0241457, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33770084

RESUMO

With an estimated 440,000 active cases occurring each year, medical device associated infections pose a significant burden on the US healthcare system, costing about $9.8 billion in 2013. Staphylococcus epidermidis is the most common cause of these device-associated infections, which typically involve isolates that are multi-drug resistant and possess multiple virulence factors. S. epidermidis is also frequently a benign contaminant of otherwise sterile blood cultures. Therefore, tests that distinguish pathogenic from non-pathogenic isolates would improve the accuracy of diagnosis and prevent overuse/misuse of antibiotics. Attempts to use multi-locus sequence typing (MLST) with machine learning for this purpose had poor accuracy (~73%). In this study we sought to improve the diagnostic accuracy of predicting pathogenicity by focusing on phenotypic markers (i.e., antibiotic resistance, growth fitness in human plasma, and biofilm forming capacity) and the presence of specific virulence genes (i.e., mecA, ses1, and sdrF). Commensal isolates from healthy individuals (n = 23), blood culture contaminants (n = 21), and pathogenic isolates considered true bacteremia (n = 54) were used. Multiple machine learning approaches were applied to characterize strains as pathogenic vs non-pathogenic. The combination of phenotypic markers and virulence genes improved the diagnostic accuracy to 82.4% (sensitivity: 84.9% and specificity: 80.9%). Oxacillin resistance was the most important variable followed by growth rate in plasma. This work shows promise for the addition of phenotypic testing in clinical diagnostic applications.


Assuntos
Bacteriemia/diagnóstico , Staphylococcus epidermidis/isolamento & purificação , Antibacterianos/farmacologia , Bacteriemia/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Aprendizado de Máquina , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Oxacilina/farmacologia , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/patogenicidade , Staphylococcus epidermidis/fisiologia , Virulência/genética
14.
Sci Rep ; 11(1): 6140, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731748

RESUMO

Enzymes are the cornerstone of modern biotechnology. Achromopeptidase (ACP) is a well-known enzyme that hydrolyzes a number of proteins, notably proteins on the surface of Gram-positive bacteria. It is therefore used for sample preparation in nucleic acid tests. However, ACP inhibits DNA amplification which makes its integration difficult. Heat is commonly used to inactivate ACP, but it can be challenging to integrate heating into point-of-care devices. Here, we use recombinase polymerase amplification (RPA) together with ACP, and show that when ACP is immobilized on nitrocellulose paper, it retains its enzymatic function and can easily and rapidly be activated using agitation. The nitrocellulose-bound ACP does, however, not leak into the solution, preventing the need for deactivation through heat or by other means. Nitrocellulose-bound ACP thus opens new possibilities for paper-based Point-of-Care (POC) devices.


Assuntos
Técnicas de Amplificação de Ácido Nucleico/métodos , Testes Imediatos , Infecções Estafilocócicas , Staphylococcus epidermidis/isolamento & purificação , Humanos , Sondas Moleculares/genética , Serina Endopeptidases/química , Infecções Estafilocócicas/diagnóstico , Infecções Estafilocócicas/microbiologia
15.
PLoS Pathog ; 17(2): e1009304, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33544760

RESUMO

S. epidermidis is a substantial component of the human skin microbiota, but also one of the major causes of nosocomial infection in the context of implanted medical devices. We here aimed to advance the understanding of S. epidermidis genotypes and phenotypes conducive to infection establishment. Furthermore, we investigate the adaptation of individual clonal lines to the infection lifestyle based on the detailed analysis of individual S. epidermidis populations of 23 patients suffering from prosthetic joint infection. Analysis of invasive and colonizing S. epidermidis provided evidence that invasive S. epidermidis are characterized by infection-supporting phenotypes (e.g. increased biofilm formation, growth in nutrient poor media and antibiotic resistance), as well as specific genetic traits. The discriminating gene loci were almost exclusively assigned to the mobilome. Here, in addition to IS256 and SCCmec, chromosomally integrated phages was identified for the first time. These phenotypic and genotypic features were more likely present in isolates belonging to sequence type (ST) 2. By comparing seven patient-matched nasal and invasive S. epidermidis isolates belonging to identical genetic lineages, infection-associated phenotypic and genotypic changes were documented. Besides increased biofilm production, the invasive isolates were characterized by better growth in nutrient-poor media and reduced hemolysis. By examining several colonies grown in parallel from each infection, evidence for genetic within-host population heterogeneity was obtained. Importantly, subpopulations carrying IS insertions in agrC, mutations in the acetate kinase (AckA) and deletions in the SCCmec element emerged in several infections. In summary, these results shed light on the multifactorial processes of infection adaptation and demonstrate how S. epidermidis is able to flexibly repurpose and edit factors important for colonization to facilitate survival in hostile infection environments.


Assuntos
Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Infecção Hospitalar/microbiologia , Mutação , Mucosa Nasal/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/genética , Idoso , Idoso de 80 Anos ou mais , Proteínas de Bactérias/metabolismo , Infecção Hospitalar/genética , Infecção Hospitalar/metabolismo , Feminino , Genótipo , Hemólise , Humanos , Sequências Repetitivas Dispersas , Masculino , Pessoa de Meia-Idade , Mucosa Nasal/metabolismo , Fenótipo , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/metabolismo , Staphylococcus epidermidis/classificação , Staphylococcus epidermidis/crescimento & desenvolvimento , Staphylococcus epidermidis/isolamento & purificação
16.
Microb Genom ; 7(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33439116

RESUMO

There is increased awareness of the worldwide spread of specific epidemic multidrug-resistant (MDR) lineages of the human commensal Staphylococcus epidermidis. Here, using bioinformatic analyses accounting for population structure, we determined genomic traits (genes, SNPs and k-mers) that distinguish S. epidermidis causing prosthetic-joint infections (PJIs) from commensal isolates from nares, by analysing whole-genome sequencing data from S. epidermidis from PJIs prospectively collected over 10 years in Sweden, and contemporary S. epidermidis from the nares of patients scheduled for arthroplasty surgery. Previously suggested virulence determinants and the presence of genes and mutations linked to antimicrobial resistance (AMR) were also investigated. Publicly available S. epidermidis sequences were used for international extrapolation and validation of findings. Our data show that S. epidermidis causing PJIs differed from nasal isolates not by virulence but by traits associated with resistance to compounds used in prevention of PJIs: ß-lactams, aminoglycosides and chlorhexidine. Almost a quarter of the PJI isolates did not belong to any of the previously described major nosocomial lineages, but the AMR-related traits were also over-represented in these isolates, as well as in international S. epidermidis isolates originating from PJIs. Genes previously associated with virulence in S. epidermidis were over-represented in individual lineages, but failed to reach statistical significance when adjusted for population structure. Our findings suggest that the current strategies for prevention of PJIs select for nosocomial MDR S. epidermidis lineages that have arisen from horizontal gene transfer of AMR-related traits into multiple genetic backgrounds.


Assuntos
Farmacorresistência Bacteriana Múltipla , Prótese de Quadril/microbiologia , Prótese do Joelho/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/classificação , Sequenciamento Completo do Genoma/métodos , Idoso , Idoso de 80 Anos ou mais , Biologia Computacional , Feminino , Transferência Genética Horizontal , Genômica , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/isolamento & purificação , Staphylococcus epidermidis/patogenicidade , Suécia
17.
Am J Otolaryngol ; 42(3): 102900, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33454455

RESUMO

OBJECTIVE: To investigate the distribution of pathogenic bacteria in patients with tympanic membrane perforation after chronic suppurative otitis media (CSOM) in dry ear and its influence on the success rate of tympanoplasty and postoperative infection. METHODS: 740 patients with tympanic membrane perforation after CSOM underwent endoscopic tympanoplasty were selected. The mucosal surface secretion of middle-ear was collected for bacterial culture and drug sensitivity test. The patients were followed up several times from 1 week to 3 months after the surgery. RESULTS: 740 cases of ear secretions samples, raise the pathogens of 208 cases (28.1%), the success rate of surgery with microorganism grown and with no grown was 93.8% and 91.5%. fungus (14.6%) was the most species among the patients with the positive result, followed by methicillin-sensitive Staphylococcus aureus (4.1%), Pseudomonas (2.0%), Staphylococcus epidermidis (1.9%), methicillin-resistant Staphylococcus aureus (1.6%) and so on. There was no statistical difference in the proportion of perforation and infection in each group. There were no statistically significant differences in gender, age and duration of disease among the groups. CONCLUSION: There were still microbial colonization in patients with tympanic membrane perforation after CSOM in dry ear, include fungus, Staphylococcus aureus and Pseudomonas aeruginosa. Different microbial colonization had no influence on the success rate of tympanoplasty and postoperative infection.


Assuntos
Orelha Média/microbiologia , Endoscopia/métodos , Otite Média Supurativa/complicações , Otite Média Supurativa/microbiologia , Perfuração da Membrana Timpânica/microbiologia , Perfuração da Membrana Timpânica/cirurgia , Timpanoplastia/métodos , Adulto , Doença Crônica , Feminino , Humanos , Masculino , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Pessoa de Meia-Idade , Pseudomonas/isolamento & purificação , Estudos Retrospectivos , Staphylococcus aureus/isolamento & purificação , Staphylococcus epidermidis/isolamento & purificação , Perfuração da Membrana Timpânica/etiologia
18.
Pak J Pharm Sci ; 34(6(Supplementary)): 2303-2308, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35039267

RESUMO

In this cross-sectional study, the isolation and identification of Methicillin Resistant Staphylococcus aureus (MRSA) and Methicillin Resistant S. epidermidis (MRSE) was described from skin infections (n=100). Initial isolation was done by conventional procedures followed by amplification/ sequence analysis of 16S rRNA. Methicillin resistance was determined using cefoxitin discs and resistant isolates were screened for mec-A gene followed by Minimum Inhibitory Concentrations (MIC) determination of vancomycin. In second phase, we investigated extract of Azadirachta indica leaves using Fourier Transformed Infrared Spectroscopy (FTIR-Spectroscopy) and investigated in vitro activity. Initially, total of 28 Staphylococci were identified. 16S rRNA gene sequence confirmed S. aureus (22), S. epidermidis (3) and S. saprophyticus (3) isolates. Cefoxitin discs showed (7/22) MRSA, (3/3) (MRSE) and none of the methicillin resistant S. saprophyticus. MRSA and MRSE isolates showed presence of mec-A gene. However, all isolates were sensitive to vancomycin MIC (0.5-2µg/mL) and sensitive to Linezolid. FTIR-Spectroscopy of A. indica indicated the presence of azadirachtin and nimbolinin. The mean zone of inhibition was measured 14.23±1.37 and 13.66±0.70 against MRSA and MRSE isolates, respectively. Altogether, MRSA and MRSE is significant public health concern. However, vancomycin and linezolid were found effective and extract of A. indica showed in vitro effects.


Assuntos
Antibacterianos/farmacologia , Azadirachta , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Extratos Vegetais/farmacologia , Folhas de Planta , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Staphylococcus epidermidis/efeitos dos fármacos , Antibacterianos/isolamento & purificação , Azadirachta/química , Estudos Transversais , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Infecções Cutâneas Estafilocócicas/microbiologia , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/isolamento & purificação
20.
Diagn Microbiol Infect Dis ; 99(1): 115173, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32992142
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...